Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane.

نویسندگان

  • Natascha Blaudeck
  • Peter Kreutzenbeck
  • Roland Freudl
  • Georg A Sprenger
چکیده

In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides.

Translocation of lipid-linked oligosaccharide (LLO) intermediates across membranes is an essential but poorly understood process in eukaryotic and bacterial glycosylation pathways. Membrane proteins defined as translocases or flippases are implicated to mediate the translocation reaction. The membrane protein Wzx has been proposed to mediate the translocation across the plasma membrane of lipop...

متن کامل

Modified Recombinant Proteins Can Be Exported via the Sec Pathway in Escherichia coli

The correct folding of a protein is a pre-requirement for its proper posttranslational modification. The Escherichia coli Sec pathway, in which preproteins, in an unfolded, translocation-competent state, are rapidly secreted across the cytoplasmic membrane, is commonly assumed to be unfavorable for their modification in the cytosol. Whether posttranslationally modified recombinant preproteins c...

متن کامل

Site-specific antibodies against the PrlA (secY) protein of Escherichia coli inhibit protein export by interfering with plasma membrane binding of preproteins.

Genetic evidence indicates that the PrlA (SecY) protein of Escherichia coli functions as a membrane integrated signal sequence receptor in protein "export"--i.e., in protein translocation across (or integration into) the plasma membrane. We have raised antibodies in rabbits against two synthetic peptides representing the hydrophilic N- or C-terminal region of PrlA. Using these antibodies as pro...

متن کامل

Alterations to the signal peptide of an outer membrane protein (OmpA) of Escherichia coli K-12 can promote either the cotranslational or the posttranslational mode of processing.

The signal sequence of the precursor of the Escherichia coli outer membrane protein OmpA was altered by oligonucleotide insertions into the corresponding gene. In one case, OmpA-S1, the hydrophobic core of the signal peptide, is reduced from 12 to 10 residues, and one positive charge is added near the NH2-terminus. In another case, OmpA-P1, the hydrophobic core is extended from 12 to 16 residue...

متن کامل

Additional in vitro and in vivo evidence for SecA functioning as dimers in the membrane: dissociation into monomers is not essential for protein translocation in Escherichia coli.

SecA is an essential component in the Sec-dependent protein translocation pathway and, together with ATP, provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. Previous studies established that SecA undergoes monomer-dimer equilibrium in solution. However, the oligomeric state of functional SecA during the protein translocation p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 9  شماره 

صفحات  -

تاریخ انتشار 2003